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ANOMALOUS VISIBLE EMISSION OBSERVED FROM THE REAR SIDE OF
LASER-IRRADIATED THIN TRANSPARENT TARGETS

The study of the laser-pellet interaction in planar geometry on

thin target foils or films allows access to the cold rear (inner) surface

of the target for a variety of optical diagnostics. We have previously

reported temporally and spectrally resolved visible emission measurements

to determine the time history of the brightness temperature of this rear

surface for thin opaque targets irradiated in vacuum. IThese measure-

ments were performed as part of an effort to understand the mechanisms that

transmit energy through the laser-irradiated targets, which, in the context

of the ablative implosion of spherical inertial confinement fusion targets,

can result in deleterious preheat of the pellet fuel. However, for transparent

targets such as CH, there is an ambiguity in the source of the visible light

observed from the rear, since light emitted from the hot irradiated (front)

surface of the target may be transmitted through the target and be confused

with rear- surface emission phenomena. A set of emission measurements on

thin irradiated CHi and glass targets is reported here that display a

characteristic double-peaked temporal signature that has not been previously

reported in this context. This is due to the formation, shortly after

the initial front surface breakdown, of an optically thick layer inter-

mediate between the front and rear surfaces of the thin film targets. This

layer strongly attenuates the front surface emission, and is itself vir-

tually nonluminous as seen from the rear, so that the heating of the rear

surface may be unambiguously observed. Upon heating, the rear surface quickly

becomes an optically thick plasma that behaves as a blackbody emitter, permitting

rear surface time-resolved brightness temperaure measurements to be made.

These measurements were performed at an incident laser irradiance

of 5 x 10 12W/cm 2and a 1-nm spot size on large planar targets using the

Ma;nuseript submitted December 18, 1980.
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NRL Pharos II laser system, which provided up to 500 J in a 4-nsec FWHM,

1.05-irm pulse. The rear surface luminosity was detected with a monochromator

equipped with a fast (l-nsec) photomultiplier. Many CVi target thicknesses

were used, ranging from 2.5 to 3%m. For each target thickness, a small early

light peak is observed from the rear of the target (see Fig. 1) which quickly

decreases and whose amplitude and timing are independent of target thickness.

This is followed by a second signal whose peak amplitude monotonically

decreases and whose peak shifts later with increasing target thickness. Similar

behavior is seen on thin glass targets, and the behavior of the second peak

is similar to that observed on opaque Al targets of comparable areal density.

We conclude that the first signal is due to visible light emission from

the front of the target that occurs at front surface breakdown, very early in

10 2
the foot of the laser pulse at an irradiance of ,10 W/cm2 . Observation

through the foil of the rapidly heating front surface (Tpeak >, 200 eV) is

quickly masked by the formation of an opaque region between the front

and rear surfaces. Streak photography of the emitted rear surface

light (Fig. 2) shows that transmitted front surface luminosity cuts off

rapidly within the laser focal spot, but persists at the periphery, where

the hot front surface plasma plume expands laterally beyond the focal

spot region. Withinthe focal spot, there is a time delay followed by rising

visible emission characteristic of rear surface heating near the peak

of the laser pulse. A similar double-peaked signal has been previously

noted in the transmission of an irradiating laser beam through a transparent
2

target. In that case, transmission of the laser beam cuts off from the time

of the front surface breakdown until laser burnthrough occurs. In our

experiments, however, burnthrough does not occur, and to our knowledge

the temporal emission sequence we describe here has not been previously

reported.
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Fig. 1 - Rear surface luminosity measurements (X = 4717 A, AX = 33 A) for two transparent
targets, 12pm CH and 30m CH, and an opaque 4pm Al foil target, showing the additional
early peak observed for the transparent targets. Time zero refers to the peak of the laser
pulse.
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Our observations are in contrast to those reported for impact shock

3
experiments on solid transparent targets in vacuum , in which shock luminosity

is observed from the rear through the undisturbed portion of the transparent

target to the emitting layer in the vicinity of the shock. In such cases,

emission has been reported to rise suddenly as the shock is applied at the

front surface, remain relatively flat while the shock is within the material,

and then relax abruptly to a lower value characteristic of the residual, zero-

pressure state when the shock reaches the rear surface. (The overtaking

of the shock by a rarefaction wave can also cause an abrupt decrease in the

observed emission.) In our long-pulse (L.-nsec) laser acceleration experiments

on thin targets, we avoid strong shock effects, and the observed rear

surface heating is believed to be due primarily to other phenomnena. Thus

the transmission cutoff may be caused by the penetration of a temperature

gradient into the target, whose leading edge is both cool enough (.5 e'J)

to be at most weakly luminous, arid optically dense enough to obscure light

emitted from hotter regions nearer to the front of the target. Shock-induced

luminosity in transparent solids may be accompanied by loss of transparency,

due to such effects as chemical breakdown, pressure-induced change to a

semi-conductive or conductive state, loss of optical homogeneity, phase

change, etc. 4Similar effects are presumably responsible for the opacity

observed here. The continued transmission beyond the edge of the irradiated

spot as shown in Fig. 2 would then be caused by insufficient bulk heating

to cause transmission to cut off, and the intermediate dark layer would be

caused by transmission cutoff coupled with insufficient rear surface heating

to cause detectable emission.

On the basis of these observations, the second observed peak consists

of visible emission from the rear surface behind the focal spot. When
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the entire optical detection system is calibrated on an absolute scale,

this rear surface luminosity can be directly related to absolute blackbody

emission levels and rear surface temperatures thereby determined. The results

of such a study on transparent targets will be reported in detail else-

where.
5
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